
NAG C Library Function Document

nag_mesh2d_bound (d06bac)

1 Purpose

nag_mesh2d_bound (d06bac) generates a boundary mesh on a closed connected subdomain � of IR2.

2 Specification

#include <nag.h>
#include <nagd06.h>

void nag_mesh2d_bound (Integer nlines, const double coorch[], const Integer lined[],

double (*fbnd)(Integer i, double x, double y, Nag_Comm *comm),

const double coorus[], Integer nus, const double rate[], Integer ncomp,
const Integer nlcomp[], const Integer lcomp[], Integer nvmax,
Integer nedmx, Integer *nvb, double coor[], Integer *nedge, Integer edge[],
Integer itrace, const char *outfile, Nag_Comm *comm, NagError *fail)

3 Description

Given a closed connected subdomain � of IR2, whose boundary @� is divided by characteristic points into
m distinct line segments, nag_mesh2d_bound (d06bac) generates a boundary mesh on @�. Each line
segment may be a straight line, a curve defined by the equation f x; yð Þ ¼ 0, or a polygonal curve defined
by a set of given boundary mesh points.

This function is primarily designed for use with either nag_mesh2d_inc (d06aac) (a simple incremental
method) or nag_mesh2d_delaunay (d06abc) (Delaunay–Voronoi method) or nag_mesh2d_front (d06acc)
(Advancing Front method) to triangulate the interior of the domain �. For more details about the
boundary and interior mesh generation, consult the d06 Chapter Introduction as well as George and
Borouchaki (1998).

This function is derived from material in the MODULEF package from INRIA (Institut National de
Recherche en Informatique et Automatique).

4 References

George P L and Borouchaki H (1998) Delaunay Triangulation and Meshing: Application to Finite
Elements Editions HERMES, Paris

5 Arguments

1: nlines – Integer Input

On entry: m, the number of lines that define the boundary of the closed connected subdomain (this
equals the number of characteristic points which separate the entire boundary @� into lines).

Constraint: nlines � 1.

2: coorch½2� nlines� – const double Input

On entry: coorch½2� i� 1ð Þ� contains the x co-ordinate of the ith characteristic point, for
i ¼ 1; . . . ; nlines; while coorch½2� i� 1ð Þ þ 1� contains the corresponding y co-ordinate.

3: lined½4� nlines� – const Integer Input

On entry: the description of the lines that define the boundary domain. The line i, for i ¼ 1; . . . ;m,
is defined as follows:

d06 – Mesh Generation d06bac

[NP3660/8] d06bac.1

lined½4� i� 1ð Þ�
The number of points on the line, including two end points.

lined½4� i� 1ð Þ þ 1�
The first end point of the line. If lined½4� i� 1ð Þ þ 1� ¼ j, then the co-ordinates of the first
end point are those stored in coorch½2� j� 1ð Þ : 2� j� 1ð Þ þ 1�.

lined½4� i� 1ð Þ þ 2�
The second end point of the line. If lined½4� i� 1ð Þ þ 2� ¼ k, then the co-ordinates of the
second end point are those stored in coorch½2� k � 1ð Þ : 2� k � 1ð Þ þ 1�.

lined½4� i� 1ð Þ þ 3�
This defines the type of line segment connecting the end points. Additional information is
conveyed by the numerical value of lined½4� i� 1ð Þ þ 3� as follows:

(i) lined½4� i� 1ð Þ þ 3� > 0, the line is described in the user-supplied function fbnd with
lined½4� i� 1ð Þ þ 3� as the index. In this case, the line must be described in the
trigonometric (anticlockwise) direction;

(ii) lined½4� i� 1ð Þ þ 3� ¼ 0, the line is a straight line;

(iii) if lined½4� i� 1ð Þ þ 3� < 0, say (i.e., lined½4� i� 1ð Þ þ 3� ¼ �p for some index p),
then the line is a polygonal arc joining the end points and interior points specified in
coorus. In this case the line contains the points whose co-ordinates are stored in
coorch½2� j� 1ð Þ : 2� j� 1ð Þ þ 1�,coorus½2� p� 1ð Þ : 2� p� 1ð Þ þ 1�,
coorus½2� p : 2� pþ 1�,. . .,coorus½2� pþ r � 4ð Þ : 2� pþ r � 4ð Þ þ 1�,
coorch½2� k � 1ð Þ : 2� k � 1ð Þ þ 1�, where
r ¼ lined½4� i� 1ð Þ�, j ¼ lined½4� i� 1ð Þ þ 1� and k ¼ lined½4� i� 1ð Þ þ 2�.

Constraints:

2 � lined½4� i� 1ð Þ�;
1 � lined½4� i� 1ð Þ þ 1� � nlines;
1 � lined½4� i� 1ð Þ þ 2� � nlines;
lined½4� i� 1ð Þ þ 1� 6¼ lined½4� i� 1ð Þ þ 2�, for i ¼ 1; 2; . . . ; nlines.

For each line described by the user-supplied function (lines with lined½4� i� 1ð Þ þ 3� > 0,
i ¼ 1; . . . ; nlines) the two end points (lined½4� i� 1ð Þ þ 1� and lined½4� i� 1ð Þ þ 2�) lie on the
curve defined by index lined½4� i� 1ð Þ þ 3� in the user-supplied function fbnd, i.e.,

fbnd lined½4� i� 1ð Þ þ 3�; coorch½2� lined½4� i� 1ð Þ þ 1� � 1ð Þ�;ð
coorch½2� lined½4� i� 1ð Þ þ 1� � 1ð Þ þ 1�; commÞ ¼ 0;
fbnd lined½4� i� 1ð Þ þ 3�; coorch½2� lined½4� i� 1ð Þ þ 2� � 1ð Þ�;ð
coorch½2� lined½4� i� 1ð Þ þ 2� � 1ð Þ þ 1�; commÞ ¼ 0, for i ¼ 1; 2; . . . ; nlines.

For all lines described as polygonal arcs (lines with lined½4� i� 1ð Þ þ 3� < 0, i ¼ 1; . . . ;nlines)
the sets of intermediate points (i.e.,
�lined½4� i� 1ð Þ þ 3� : �lined½4� i� 1ð Þ þ 3� þ lined½4� i� 1ð Þ� � 3½ � for all i such that
lined½4� i� 1ð Þ þ 3� < 0) are not overlapping. This can be expressed as:

�lined½4� i� 1ð Þ þ 3� þ lined½4� i� 1ð Þ� � 3 ¼
X

i;lined½4� i�1ð Þþ3�<0f g
lined½4� i� 1ð Þ� � 2f g

or

�lined½4� i� 1ð Þ þ 3� þ lined½4� i� 1ð Þ� � 2 ¼ �lined½4� j� 1ð Þ þ 3�,
for a j such that j ¼ 1; . . . ;nlines, j 6¼ i and lined½4� j� 1ð Þ þ 3� < 0

4: fbnd – function, supplied by the user External Function

fbnd must be supplied by you to calculate the value of the function which describes the curve

x; yð Þ 2 IR2; such that f x; yð Þ ¼ 0
� �

on segments of the boundary for which

d06bac NAG C Library Manual

d06bac.2 [NP3660/8]

lined½4� i� 1ð Þ þ 3� > 0. If there are no boundaries for which lined½4� i� 1ð Þ þ 3� > 0 fbnd
will never be referenced by nag_mesh2d_bound (d06bac) and fbnd may be null.

Its specification is:

double fbnd (Integer i, double x, double y, Nag_Comm *comm)

1: i – Integer Input

On entry: lined½4� i� 1ð Þ þ 3�, the reference index of the line (portion of the contour) i
described.

2: x – double Input
3: y – double Input

On entry: the values of x and y at which f x; yð Þ is to be evaluated.

4: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to fbnd.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_mesh2d_bound (d06bac) these
pointers may be allocated memory by the user and initialized with various
quantities for use by fbnd when called from nag_mesh2d_bound (d06bac).

5: coorus½2� nus� – const double Input

On entry: the co-ordinates of the intermediate points for polygonal arc lines. For a line i defined as
a polygonal arc (i.e., lined½4� i� 1ð Þ þ 3� < 0), if p ¼ �lined½4� i� 1ð Þ þ 3�, then
coorus½2� k � 1ð Þ�, k ¼ p; pþ 1; . . . ; pþ lined½4� i� 1ð Þ� � 3 must contain the x co-ordinate of
the consecutive intermediate points for this line. Similarly coorus½2� k � 1ð Þ þ 1�,
k ¼ p; pþ 1; . . . ; pþ lined½4� i� 1ð Þ� � 3 must contain the corresponding y co-ordinate.

6: nus – Integer Input

On entry: the second dimension of the array coorus as declared in the function from which
nag_mesh2d_bound (d06bac) is called.

Constraint: nus �
P

i;lined½4� i�1ð Þþ3�<0f g
lined½4� i� 1ð Þ� � 2f g.

7: rate½nlines� – const double Input

On entry: rate½i� 1� is the geometric progression ratio between the points to be generated on the
line i, for i ¼ 1; . . . ;m and lined½4� i� 1ð Þ þ 3� � 0. rate½i� 1� is not referenced if
lined½4� i� 1ð Þ þ 3� < 0.

Constraint: if lined½4� i� 1ð Þ þ 3� � 0, rate½i� 1� > 0, for i ¼ 1; 2; . . . ; nlines.

8: ncomp – Integer Input

On entry: n, the number of separately connected components of the boundary.

Constraint: ncomp � 1.

9: nlcomp½ncomp� – const Integer Input

On entry: nlcomp½k � 1�j j is the number of line segments in component k of the contour. The line i
of component k runs in the direction lined½4� i� 1ð Þ þ 1� to lined½4� i� 1ð Þ þ 2� if
nlcomp½k � 1� > 0, and in the opposite direction otherwise; for k ¼ 1; . . . ; n.

d06 – Mesh Generation d06bac

[NP3660/8] d06bac.3

Constraints:

1 � nlcomp½k� 1�j j � nlines, for k ¼ 1; 2; . . . ;ncomp;
Xn

k¼1

nlcomp½k � 1�j j ¼ nlines.

10: lcomp½nlines� – const Integer Input

On entry: lcomp½l1 : l2�, where l2 ¼
Xk

i¼1

nlcomp½i� 1�j j and l1 ¼ l2þ 1� nlcomp½k � 1�j j is the

list of line numbers for the kth components of the boundary, for k ¼ 1; . . . ;ncomp.

Constraint: lcomp must hold a valid permutation of the integers 1; nlines½ �.

11: nvmax – Integer Input

On entry: the maximum number of the boundary mesh vertices to be generated.

Constraint: nvmax � nlines.

12: nedmx – Integer Input

On entry: the maximum number of boundary edges in the boundary mesh to be generated.

Constraint: nedmx � 1.

13: nvb – Integer * Output

On exit: the total number of boundary mesh vertices generated.

14: coor½2� nvmax� – double Output

On exit: coor½2� i� 1ð Þ� will contain the x co-ordinate of the ith boundary mesh vertex generated,
for i ¼ 1; . . . ; nvb; while coor½2� i� 1ð Þ þ 1� will contain the corresponding y co-ordinate.

15: nedge – Integer * Output

On exit: the total number of boundary edges in the boundary mesh.

16: edge½3� nedmx� – Integer Output

On exit: the specification of the boundary edges. edge½3� j� 1ð Þ� and edge½3� j� 1ð Þ þ 1� will
contain the vertex numbers of the two end points of the jth boundary edge. edge½3� j� 1ð Þ þ 2� is
a reference number for the jth boundary edge and

edge½3� j� 1ð Þ þ 2� ¼ lined½4� i� 1ð Þ þ 3�, where i and j are such that the jth edges is
part of the ith line of the boundary and lined½4� i� 1ð Þ þ 3� � 0;

edge½3� j� 1ð Þ þ 2� ¼ 100þ lined½4� i� 1ð Þ þ 3�j j, where i and j are such that the jth
edges is part of the ith line of the boundary and lined½4� i� 1ð Þ þ 3� < 0.

Note that the edge vertices are numbered from 1 to nvb.

17: itrace – Integer Input

On entry: the level of trace information required from nag_mesh2d_bound (d06bac).

itrace � 0

No output is generated.

itrace ¼ 1

Output from the boundary mesh generator is printed. This output contains the input
information of each line and each connected component of the boundary.

d06bac NAG C Library Manual

d06bac.4 [NP3660/8]

itrace > 1

The output is similar to that produced when itrace ¼ 1, but the co-ordinates of the generated
vertices on the boundary are also output.

itrace ¼ �1

An analysis of the output boundary mesh is printed on the current advisory message unit.
This analysis includes the orientation (clockwise or anticlockwise) of each connected
component of the boundary. Those informations could be of interest to you, especially if an
interior meshing is carried out using the output of this function, calling either
nag_mesh2d_inc (d06aac), nag_mesh2d_delaunay (d06abc) or nag_mesh2d_front (d06acc).

You are advised to set itrace ¼ 0, unless you are experienced with Finite Element meshes
generation.

18: outfile – const char * Input

On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

19: comm – Nag_Comm * Communication Structure

The NAG communication argument (see Section 2.2.1.1 of the Essential Introduction).

20: fail – NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, ncomp the number of connected components of the boundary is less than 1:
ncomp ¼ valueh i.
On entry, nedmx the maximum number of boundary edge lines is less than 1: nedmx ¼ valueh i.
On entry, nlines ¼ valueh i.
Constraint: nlines � 1.

NE_INT_2

On entry, nus < nusmin: nus ¼ valueh i, nusmin ¼ valueh i.
On entry, nvmax the maximum number of boundary vertices is less than nlines: nvmax ¼ valueh i,
nlines ¼ valueh i.
On entry, the line list for the separate connected component of the boundary is badly set:
lcomp½l � 1� ¼ valueh i, l ¼ valueh i. It should be less than or equal to nlines and greater than or
equal to 1.

On entry, the number of points on line valueh i is valueh i. It should be greater than or equal to 2.

On entry, there is a correlation problem between the user-supplied co-ordinates and the specification
of the polygonal arc representing line i ¼ valueh i with the index in coorus ¼ valueh i.
On entry, the sum of absolute values of all numbers of line segments is different from nlines. The
sum of all the elements of nlcomp ¼ valueh i. nlines ¼ valueh i.

d06 – Mesh Generation d06bac

[NP3660/8] d06bac.5

NE_INT_3

On entry, the absolute number of line segments in the kth component of the contour should be less
than or equal to nlines and greater than 0. k ¼ valueh i, nlcomp½k � 1� ¼ valueh i, nlines ¼ valueh i.
On entry, the index of the first end point of line valueh i is valueh i. It should be greater than or
equal to 1 and less than or equal to nlines ¼ valueh i.
On entry, the index of the second end point of line valueh i is valueh i. It should be greater than or
equal to 1 and less than or equal to nlines ¼ valueh i.
On entry, the indices of the extremities of line valueh i are both equal to valueh i.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

NE_MESH_ERROR

An error has occurred during the generation of the boundary mesh. It appears that nedmx is not
large enough: nedmx ¼ valueh i.
An error has occurred during the generation of the boundary mesh. It appears that nvmax is not
large enough: nvmax ¼ valueh i.
On entry, end point 1, with index k, does not lie on the curve representing line i with index j:
k ¼ valueh i, i ¼ valueh i, j ¼ valueh i, f x; yð Þ ¼ valueh i.
On entry, end point 2, with index k, does not lie on the curve representing line i with index j:
k ¼ valueh i, i ¼ valueh i, j ¼ valueh i, f x; yð Þ ¼ valueh i.
On entry, the geometric progression ratio between the points to be generated on line valueh i is
valueh i. It should be greater than 0 unless the line segment is defined by user-supplied points.

On entry, there is a problem with either the co-ordinates of characteristic points, or with the
definition of the mesh lines.

NE_NOT_CLOSE_FILE

Cannot close file valueh i.

NE_NOT_WRITE_FILE

Cannot open file valueh i for writing.

7 Accuracy

Not applicable.

8 Further Comments

The boundary mesh generation technique in this function has a ‘tree’ structure. The boundary should be
partitioned into geometrically simple segments (straight lines or curves) delimited by characteristic points.
Then, the lines should be assembled into connected component of the boundary domain.

Using this strategy, the inputs to that function can be built up, following the requirements stated in
Section 5:

the characteristic and the user-supplied intermediate points:

nlines, nus, coorch and coorus;

the characteristic lines:

lined, fbnd, rate;

finally the assembly of lines into the connected components of the boundary:

d06bac NAG C Library Manual

d06bac.6 [NP3660/8]

ncomp, and

nlcomp, lcomp.

The example below details the use of this strategy.

9 Example

The NAG logo is taken as an example of a geometry with holes. The boundary has been partitioned in 40
lines characteristic points; including 4 for the exterior boundary and 36 for the logo itself. All line
geometry specifications have been considered, see the argument description of lined, including 4 lines
defined as polygonal arc, 4 defined by a user-supplied function and all the others are straight lines.

Figure 1 top represents the boundary mesh of the NAG logo; there are 259 nodes and 259 edges. The
Figure 1 middle and bottom represent the final mesh built using respectively the Delaunay–Voronoi
(nag_mesh2d_delaunay (d06abc)) and the Advancing front (nag_mesh2d_front (d06acc)) method.

9.1 Program Text

/* nag_mesh2d_bound (d06bac) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd06.h>

/* Structure to allow data to be passed into */
/* the user-supplied function fbnd */

struct user
{

/* details of the ellipse containing the NAG logo */

double xa, xb, x0, y0;
};
static double fbnd(Integer , double , double , Nag_Comm *);

#define EDGE(I,J) edge[3*((J)-1)+(I)-1]
#define LINED(I,J) lined[4*((J)-1)+(I)-1]
#define CONN(I,J) conn[3*((J)-1)+(I)-1]
#define COOR(I,J) coor[2*((J)-1)+(I)-1]
#define COORCH(I,J) coorch[2*((J)-1)+(I)-1]
#define COORUS(I,J) coorus[2*((J)-1)+(I)-1]

int main(int argc, char* argv[])
{

const Integer nus=4, nvmax=1000, nedmx=300, nvint=0;
struct user ellipse;
Nag_Comm comm;
double x0, xa, xb, xmax, xmin, y0, ymax, ymin;
Integer exit_status, i, itrace, j, k, ncomp, nedge, nelt, nlines,

npropa, nv, nvb, reftk, l;
NagError fail;
char pmesh[2];
double *coor=0, *coorch=0, *coorus=0, *rate=0, *weight=0;
Integer *conn=0, *edge=0, *lcomp=0, *lined=0,

*nlcomp=0;

INIT_FAIL(fail);
exit_status = 0;

Vprintf(" nag_mesh2d_bound (d06bac) Example Program Results\n\n");

d06 – Mesh Generation d06bac

[NP3660/8] d06bac.7

/* Skip heading in data file */

Vscanf("%*[^\n] ");

/* Initialise boundary mesh inputs: */
/* the number of line and of the characteristic points of */
/* the boundary mesh */

Vscanf("%ld%*[^\n] ", &nlines);

/* Allocate memory */

if (!(coor = NAG_ALLOC(2*nvmax, double)) ||
!(coorch = NAG_ALLOC(2*nlines, double)) ||
!(coorus = NAG_ALLOC(2*nus, double)) ||
!(rate = NAG_ALLOC(nlines, double)) ||
!(weight = NAG_ALLOC(1, double)) ||
!(conn = NAG_ALLOC(3*(2*nvmax+5), Integer)) ||
!(edge = NAG_ALLOC(3*nedmx, Integer)) ||
!(lined = NAG_ALLOC(4*nlines, Integer)) ||
!(lcomp = NAG_ALLOC(nlines, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* The ellipse boundary which envelops */
/* the NAG Logo, the N, the A and the G */

for (j = 1; j <= nlines; ++j) Vscanf("%lf", &COORCH(1,j));
Vscanf("%*[^\n] ");

for (j = 1; j <= nlines; ++j) Vscanf("%lf", &COORCH(2,j));
Vscanf("%*[^\n] ");

for (j = 1; j <= nus; ++j) Vscanf("%lf", &COORUS(1,j));
Vscanf("%*[^\n] ");

for (j = 1; j <= nus; ++j) Vscanf("%lf", &COORUS(2,j));
Vscanf("%*[^\n] ");

/* The lines of the boundary mesh */

for (j = 1; j <= nlines; ++j)
{

for (i = 1; i <= 4; ++i) Vscanf("%ld", &LINED(i,j));
Vscanf("%lf", &rate[j-1]);

}
Vscanf("%*[^\n] ");

/* The number of connected components */
/* to the boundary and their information */

Vscanf("%ld%*[^\n] ", &ncomp);

/* Allocate memory */

if (!(nlcomp = NAG_ALLOC(ncomp, Integer)))
{

Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

j = 0;
for (i = 0; i < ncomp; ++i)

{
Vscanf("%ld", &nlcomp[i]);
Vscanf("%*[^\n] ");

d06bac NAG C Library Manual

d06bac.8 [NP3660/8]

l = j + abs(nlcomp[i]);

for (k = j; k < l; ++k) Vscanf("%ld", &lcomp[k]);
Vscanf("%*[^\n] ");

j += abs(nlcomp[i]);
}

Vscanf(" ’ %1s ’%*[^\n] ", pmesh);

/* Data passed to the user-supplied function */

xmin = COORCH(1, 4);
xmax = COORCH(1, 2);
ymin = COORCH(2, 1);
ymax = COORCH(2, 3);

xa = (xmax-xmin)/2.0;
xb = (ymax-ymin)/2.0;

x0 = (xmin+xmax)/2.0;
y0 = (ymin+ymax)/2.0;

comm.p = (Pointer)

ellipse.xa = xa;
ellipse.xb = xb;
ellipse.x0 = x0;
ellipse.y0 = y0;

itrace = -1;

/* Call to the boundary mesh generator */

/* nag_mesh2d_bound (d06bac).
* Generates a boundary mesh
*/

nag_mesh2d_bound(nlines, coorch, lined, fbnd, coorus, nus, rate, ncomp,
nlcomp, lcomp, nvmax, nedmx, &nvb, coor, &nedge, edge,
itrace, 0, &comm, &fail);

if (fail.code == NE_NOERROR)
{

if (pmesh[0] == ’N’)
{

Vprintf(" Boundary mesh characteristics\n");
Vprintf(" nvb =%6ld\n", nvb);
Vprintf(" nedge =%6ld\n", nedge);

}
else if (pmesh[0] == ’Y’)

{

/* Output the mesh to view it using the NAG Graphics Library */

Vprintf(" %10ld%10ld\n", nvb, nedge);

for (i = 1; i <= nvb; ++i)
Vprintf(" %4ld %12.6e %12.6e \n",

i, COOR(1,i), COOR(2,i));

for (i = 1; i <= nedge; ++i)
Vprintf(" %4ld%4ld%4ld%4ld\n",

i, EDGE(1,i), EDGE(2,i), EDGE(3,i));
}

else
{

Vprintf("Problem with the printing option Y or N\n");
exit_status = -1;
goto END;

}
}

d06 – Mesh Generation d06bac

[NP3660/8] d06bac.9

else
{

Vprintf("Error from nag_mesh2d_bound (d06bac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Initialise mesh control parameters */

itrace = 0;
npropa = 1;

/* Call to the 2D Delaunay-Voronoi mesh generator */

/* nag_mesh2d_delaunay (d06abc).
* Generates a two-dimensional mesh using a Delaunay-Voronoi
* process
*/

nag_mesh2d_delaunay(nvb, nvint, nvmax, nedge, edge, &nv, &nelt, coor, conn,
weight, npropa, itrace, 0, &fail);

if (fail.code == NE_NOERROR)
{

if (pmesh[0] == ’N’)
{

Vprintf(" Complete mesh characteristics (Delaunay-Voronoi)\n");
Vprintf(" nv =%6ld\n", nv);
Vprintf(" nelt =%6ld\n", nelt);

}
else if (pmesh[0] == ’Y’)

{
/* Output the mesh to view it using the NAG Graphics Library */

Vprintf(" %10ld%10ld\n", nv, nelt);

for (i = 1; i <= nv; ++i)
Vprintf(" %12.6e %12.6e \n", COOR(1,i), COOR(2,i));

reftk = 0;
for (k = 1; k <= nelt; ++k)

Vprintf(" %10ld%10ld%10ld%10ld\n",
CONN(1,k), CONN(2,k), CONN(3,k), reftk);

}
else

{
Vprintf("Problem with the printing option Y or N\n");
exit_status = -1;
goto END;

}
}

else
{

Vprintf("Error from nag_mesh2d_delaunay (d06abc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Call to the 2D Advancing front mesh generator */

/* nag_mesh2d_front (d06acc).
* Generates a two-dimensional mesh using an Advancing-front
* method
*/

nag_mesh2d_front(nvb, nvint, nvmax, nedge, edge, &nv, &nelt, coor,
conn, weight, itrace, 0, &fail);

if (fail.code == NE_NOERROR)
{

if (pmesh[0] == ’N’)
{

Vprintf(" Complete mesh characteristics (Advancing Front)\n");

d06bac NAG C Library Manual

d06bac.10 [NP3660/8]

Vprintf(" nv =%6ld\n", nv);
Vprintf(" nelt =%6ld\n", nelt);

}
else if (pmesh[0] == ’Y’)

{
/* Output the mesh to view it using the NAG Graphics Library */

Vprintf(" %10ld%10ld\n", nv, nelt);

for (i = 1; i <= nv; ++i)
Vprintf(" %12.6e %12.6e \n",

COOR(1,i), COOR(2,i));

reftk = 0;
for (k = 1; k <= nelt; ++k)

Vprintf(" %10ld%10ld%10ld%10ld\n",
CONN(1,k), CONN(2,k), CONN(3,k), reftk);

}
else

{
Vprintf("Problem with the printing option Y or N\n");
exit_status = -1;
goto END;

}
}

else
{

Vprintf("Error from nag_mesh2d_front (d06acc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

END:
if (coor) NAG_FREE(coor);
if (coorch) NAG_FREE(coorch);
if (coorus) NAG_FREE(coorus);
if (rate) NAG_FREE(rate);
if (weight) NAG_FREE(weight);
if (conn) NAG_FREE(conn);
if (edge) NAG_FREE(edge);
if (lcomp) NAG_FREE(lcomp);
if (lined) NAG_FREE(lined);
if (nlcomp) NAG_FREE(nlcomp);

return exit_status;
}
static double fbnd(Integer i, double x, double y, Nag_Comm *pcomm)
{

double ret_val, d1, d2;
double radius2, x0, xa, xb, y0;
struct user *ellipse = (struct user *)pcomm->p;

xa = ellipse->xa;
xb = ellipse->xb;
x0 = ellipse->x0;
y0 = ellipse->y0;

ret_val = 0.0;

switch(i)
{
case 1:

/* line 1,2,3, and 4: ellipse centred in (X0,Y0) with */
/* XA and XB as coefficients */

d1 = (x - x0)/xa;
d2 = (y - y0)/xb;

ret_val = d1*d1 + d2*d2 - 1.0;
break;

d06 – Mesh Generation d06bac

[NP3660/8] d06bac.11

case 2:

/* line 24, 27, 33 and 38 are a circle centred in (X0,Y0) */
/* with radius SQRT(RADIUS2) */

x0 = 20.5;
y0 = 4.0;
radius2 = 4.25;

d1 = x - x0;
d2 = y - y0;

ret_val = d1*d1 + d2*d2 - radius2;
break;

case 3:

x0 = 17.0;
y0 = 8.5;
radius2 = 5.0;

d1 = x - x0;
d2 = y - y0;

ret_val = d1*d1 + d2*d2 - radius2;
break;

case 4:

x0 = 17.0;
y0 = 8.5;
radius2 = 5.0;

d1 = x - x0;
d2 = y - y0;

ret_val = d1*d1 + d2*d2 - radius2;
break;

case 5:

x0 = 19.5;
y0 = 4.0;
radius2 = 1.25;

d1 = x - x0;
d2 = y - y0;

ret_val = d1*d1 + d2*d2 - radius2;
break;

default:
break;

}

return ret_val;
}

9.2 Program Data

nag_mesh2d_bound (d06bac) Example Program Data
40 :NLINES (m)

9.5000 33.0000 9.5000 -14.0000 -4.0000 -2.0000 2.0000
4.0000 2.0000 -2.0000 -4.0000 -2.0000 2.0000 4.0000
7.0000 9.0000 13.0000 16.0000 9.0000 12.0000 7.0000

10.0000 18.0000 21.0000 17.0000 20.0000 16.0000 20.0000
15.5000 16.0000 18.0000 21.0000 16.0000 18.0000 18.5811
21.0000 17.0000 20.0000 20.5000 23.0000 :(COORCH(1,1:m))
-1.0000 7.5000 16.0000 7.5000 3.0000 3.0000 3.0000

d06bac NAG C Library Manual

d06bac.12 [NP3660/8]

3.0000 7.0000 8.0000 12.0000 12.0000 12.0000 12.0000
3.0000 3.0000 3.0000 3.0000 5.0000 5.0000 12.0000

12.0000 2.0000 2.0000 3.0000 3.0000 5.0000 5.0000
6.0000 6.0000 6.0000 6.0000 6.5000 6.5000 10.0811

10.0811 10.7361 10.7361 12.0000 12.0000 :(COORCH(2,1:m))
-2.6667 -3.3333 3.3333 2.6667 :(COORUS(1,1:4))
3.0000 3.0000 3.0000 3.0000 :(COORUS(2,1:4))

15 1 2 1 0.9500 15 2 3 1 1.0500
15 3 4 1 0.9500 15 4 1 1 1.0500
4 6 5 -1 1.0000 10 10 6 0 1.0000

10 7 10 0 1.0000 4 8 7 -3 1.0000
15 14 8 0 1.0000 4 13 14 0 1.0000
10 9 13 0 1.0000 10 12 9 0 1.0000
4 11 12 0 1.0000 15 5 11 0 1.0000
4 16 15 0 1.0000 7 19 16 0 1.0000
4 20 19 0 1.0000 7 17 20 0 1.0000
4 18 17 0 1.0000 13 22 18 0 1.0000
5 21 22 0 1.0000 13 15 21 0 1.0000
4 24 23 0 1.0000 10 24 32 2 1.0000
4 31 32 0 1.0000 4 34 31 0 1.0000

10 34 35 3 1.0000 4 36 35 0 1.0000
4 40 36 0 1.0000 4 39 40 0 1.0000
4 38 39 0 1.0000 4 37 38 0 1.0000

10 37 33 4 1.0000 4 30 33 0 1.0000
4 29 30 0 1.0000 4 27 29 0 1.0000
4 28 27 0 1.0000 10 26 28 5 1.0000
4 25 26 0 1.0000 4 23 25 0 1.0000 :(LINE(:,j),RATE(j),j=1,m)
4 :NCOMP (n, number of contours)
4 :number of lines in contour 1
1 2 3 4 :lines of contour 1

10 :number of lines in contour 2
14 13 12 11 10 9 8 7 6 5 :lines of contour 2
8 :number of lines in contour 3

22 21 20 19 18 17 16 15 :lines of contour 3
18 :number of lines in contour 4
30 29 28 27 26 25 24 23 40 39
38 37 36 35 34 33 32 31 :lines of contour 4
’N’ :Printing option ’Y’ or ’N’

9.3 Program Results

nag_mesh2d_bound (d06bac) Example Program Results

ANALYSIS OF THE BOUNDARY CREATED:
THE BOUNDARY MESH CONTAINS 259 VERTEX AND 259 EDGES
THERE ARE 4 COMPONENTS CONNECTED THE BOUNDARY
THE 1-st COMPONENT CONTAINS 4 LINES IN ANTICLOCKWISE ORIENTATION
THE 2-nd COMPONENT CONTAINS 10 LINES IN CLOCKWISE ORIENTATION
THE 3-rd COMPONENT CONTAINS 8 LINES IN CLOCKWISE ORIENTATION
THE 4-th COMPONENT CONTAINS 18 LINES IN CLOCKWISE ORIENTATION
Boundary mesh characteristics
nvb = 259
nedge = 259
Complete mesh characteristics (Delaunay-Voronoi)
nv = 652
nelt = 1049
Complete mesh characteristics (Advancing Front)
nv = 662
nelt = 1069

d06 – Mesh Generation d06bac

[NP3660/8] d06bac.13

Figure 1
The boundary mesh (top), the Delaunay–Voronoi mesh (middle) and the

Advancing Front mesh (bottom) of the NAG logo geometry

d06bac NAG C Library Manual

d06bac.14 (last) [NP3660/8]

	d06bac
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	nlines
	coorch
	lined
	fbnd
	i
	x
	y
	comm
	user
	iuser
	p

	coorus
	nus
	rate
	ncomp
	nlcomp
	lcomp
	nvmax
	nedmx
	nvb
	coor
	nedge
	edge
	itrace
	outfile
	comm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_INTERNAL_ERROR
	NE_MESH_ERROR
	NE_NOT_CLOSE_FILE
	NE_NOT_WRITE_FILE

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

